

Different effects of di-isopropylfluorophosphate on the entry of opioids into mouse brain

Paul G. Green & Ian Kitchen¹

Department of Biochemistry, Division of Pharmacology & Toxicology, University of Surrey, Guildford, Surrey, GU2 5XH

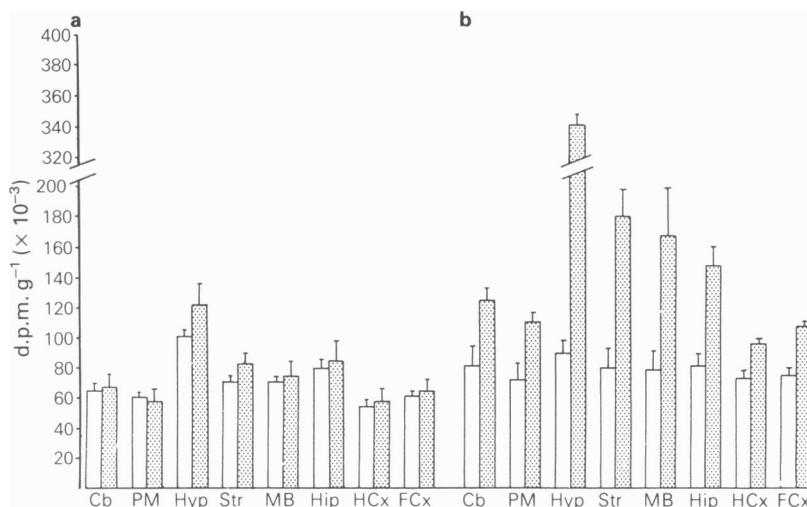
1 Di-isopropylfluorophosphate (DFP) potentiates the antinociceptive activity of alfentanil but has no effect on the activity of morphine or fentanyl. We have studied the effect of DFP on the distribution of these three opioids in the brain.

2 Distribution studies were carried out using ³H-labelled opioids administered subcutaneously to mice. Animals were killed at times of peak antinociceptive activity and ³H-opioid measured in plasma and in eight brain regions.

3 DFP pretreatment (1 mg kg⁻¹) caused a significant increase in the brain:plasma ratio of alfentanil in all brain regions but had no effect on brain:plasma ratios for morphine or fentanyl.

4 The enhanced entry of alfentanil into the brain of DFP-treated mice probably accounts for the increased antinociception observed with this opioid. This drug interaction appears to be opioid specific.

Introduction

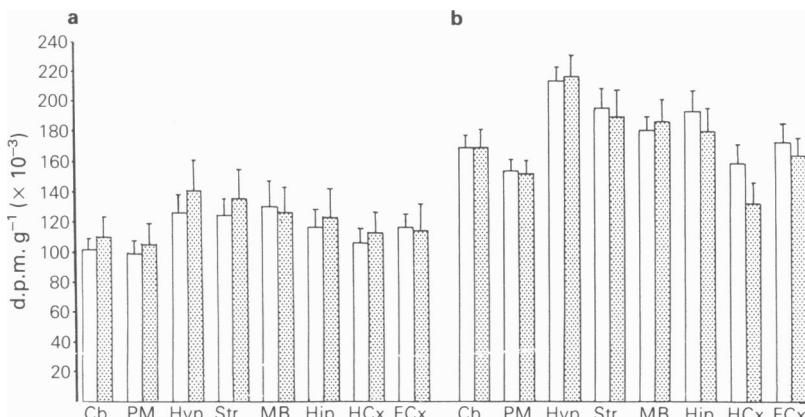

The irreversible anticholinesterase di-isopropylfluorophosphate (DFP) has been shown by some workers to be antinociceptive in rats, using the hot plate and tail flick tests (Koehn & Karczmar, 1978; Koehn *et al.*, 1980). In the mouse hot-plate test this effect occurs only at doses which produce marked motor impairment (Kitchen & Green, 1983). We have also shown that sub-antinociceptive doses of DFP potentiate alfentanil antinociception but have no effect on the activity of morphine or fentanyl (Kitchen & Green, 1983). Since all three opioids are μ -selective agonists it seemed unlikely that the observed interaction between DFP and alfentanil was manifested at opioid receptors; therefore, the possibility of a pharmacokinetic interaction was envisaged. The results of the present study demonstrate that DFP can increase the amount of radiolabelled alfentanil reaching the brain but has no effect on the entry of morphine or fentanyl.

Methods

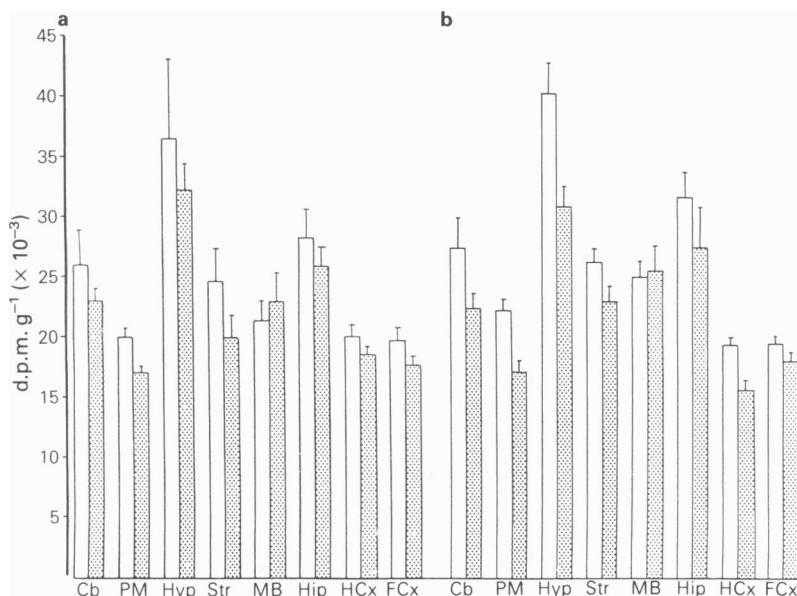
Radiolabelled distribution studies

Male albino mice (CD-1 strain, 25–30g) were equilibrated for 24 h in a quiet laboratory before experimentation. All experiments were performed between 09 h 30 min and 12 h 30 min. DFP (1 mg kg⁻¹) or 0.9% w/v NaCl solution (saline) was injected subcutaneously in a volume of 0.1 ml. This was followed 55, 50 or 30 min later by a subcutaneous injection of radiolabelled alfentanil, fentanyl or morphine respectively. Two doses of each opioid were studied and each injection contained 7 μ Ci of ³H-labelled opioid. Animals were killed by decapitation at times of peak antinociceptive activity, as determined in previous studies (Kitchen & Green, 1983); 5 min for alfentanil, 10 min for fentanyl and 30 min for morphine. Trunk blood was collected into heparinised tubes and the brains rapidly removed. Brains were dissected over ice into eight regions as described by Glowinski & Iversen (1966) and weighed. Brain tissue was solubilized in 1 ml of Soluene-100 and 20 μ l of plasma solubilized in 0.5 ml Soluene-100. Scintillation fluid (Wood *et al.*, 1975) was added to samples and ³H measured in a LKB 1210 Ultrabeta scintillation counter using appropriate quench correction curves.

¹Correspondence.


Figure 1 Effect of di-isopropylfluorophosphate (DFP) on brain levels (d.p.m. g^{-1}) of [^3H]-morphine (a) 10 mg kg^{-1} and (b) 20 mg kg^{-1} . Open columns: control-treated. Stippled columns: DFP (1 mg kg^{-1})-treated. Each column represents the mean and the vertical lines s.e.mean of at least six observations. Cb = cerebellum, PM = pons and medulla, Hyp = hypothalamus, Str = striatum, MB = mid brain, Hip = hippocampus, HCx = hind cortex, FCx = frontal cortex.

Drugs


Di-isopropylfluorophosphate was purchased from Sigma and morphine sulphate from MacFarlan Smith. Radiolabelled morphine was purchased from Amersham and radiolabelled fentanyl from IRE U.K. Ltd (High Wycombe). Fentanyl citrate, alfentanil hydrochloride and radiolabelled alfentanil were gifts from Janssen Pharmaceuticals.

Results

DFP treatment (1 mg kg^{-1}) caused a significant increase in brain levels of alfentanil (expressed as d.p.m. g^{-1}) in all brain regions at the $400 \text{ }\mu\text{g kg}^{-1}$ dose level (Figure 3). At the lower dose of alfentanil ($200 \text{ }\mu\text{g kg}^{-1}$), although brain levels were unaltered by DFP, there was a marked reduction in the plasma concentration of radiolabelled alfentanil (Table 1).

Figure 2 Effect of di-isopropylfluorophosphate (DFP) on brain levels (d.p.m. g^{-1}) of [^3H]-fentanyl (a) $40 \text{ }\mu\text{g kg}^{-1}$ and (b) $80 \text{ }\mu\text{g kg}^{-1}$. Open columns: control-treated. Stippled columns: DFP (1 mg kg^{-1})-treated. Each column represents the mean and vertical lines s.e.mean of at least six observations. Cb = cerebellum, PM = pons and medulla, Hyp = hypothalamus, Str = striatum, MB = mid brain, Hip = hippocampus, HCx = hind cortex, FCx = frontal cortex.

Figure 3 Effect of di-isopropylfluorophosphate (DFP) on brain levels ($d.p.m. g^{-1}$) of $[^3H]$ -alfentanil (a) $200 \mu g kg^{-1}$ and (b) $400 \mu g kg^{-1}$. Open columns: control-treated. Stippled columns: DFP ($1 mg kg^{-1}$)-treated. Each column represents the mean and vertical lines s.e.mean of at least six observations. Cb = cerebellum, PM = pons and medulla, Hyp = hypothalamus, Str = striatum, MB = mid brain, Hip = hippocampus, HCx = hind cortex, FCx = frontal cortex.

Brain:plasma ratios of both doses of alfentanil were accordingly significantly increased by DFP in all brain regions (Table 2). The magnitude of the increase varied from 1.7 fold in the hind cortex to 3.2 fold in the hypothalamus.

DFP pretreatment had little effect on levels of morphine or fentanyl in the brain (Figures 1 and 2), and brain:plasma ratios for these two opioids were very similar in control- and DFP-treated animals (Table 2).

Table 1 Effect of di-isopropylfluorophosphate (DFP, $1 mg kg^{-1}$) on plasma levels of $[^3H]$ -morphine, fentanyl and alfentanil

Opioid	Control	DFP-treated
Morphine ($10 mg kg^{-1}$)	197 ± 7	$174 \pm 6^*$
Morphine ($20 mg kg^{-1}$)	118 ± 10	97 ± 8
Fentanyl ($40 \mu g kg^{-1}$)	73 ± 7	90 ± 13
Fentanyl ($80 \mu g kg^{-1}$)	67 ± 4	57 ± 3
Alfentanil ($200 \mu g kg^{-1}$)	166 ± 10	$110 \pm 12^*$
Alfentanil ($400 \mu g kg^{-1}$)	147 ± 34	97 ± 6

Each value is the mean of six observations.

* $P < 0.05$, DFP vs control (Student's t test).

Discussion

In control-treated animals the levels of radioactivity in the brain compared to the plasma are highest for fentanyl, followed by alfentanil and then morphine. This accords with the lipid/water partition coefficients of these opioids; fentanyl > alfentanil > morphine (Herz & Teschemacher, 1971; Stanski & Hug, 1982) a factor which markedly influences penetration through the blood-brain barrier (Brodie *et al.*, 1960). The times for measurement of morphine, fentanyl and alfentanil levels were chosen to correspond to peak antinociceptive activity determined in our laboratory. These times agree with the literature values for these opioids (Gardocki & Yelnosky, 1963; Johannesson & Becker, 1973). There is also a good correlation between levels of these opioids in the brain and their antinociceptive effects (Johannesson & Becker, 1973; Hug & Murphy, 1981).

It is clear that the effects of DFP on the distribution of radiolabelled morphine, fentanyl and alfentanil are dissimilar. The most marked effect of DFP is on the distribution of alfentanil where plasma levels are lower and at $400 \mu g kg^{-1}$ alfentanil there is a concomitant rise in alfentanil in the brain. This enhanced entry of alfentanil into the brain of DFP-treated mice may account for the increased antinociception observed with this opioid (Kitchen & Green, 1983). The lack of a

Table 2 Effect of di-isopropylfluorophosphate (DFP, 1 mg kg⁻¹) on brain:plasma ratios for [³H]-morphine, fentanyl and alfentanil

Brain region	Brain:plasma ratios											
	Morphine 10 mg kg ⁻¹	Morphine 20 mg kg ⁻¹	Fentanyl 40 µg kg ⁻¹	Fentanyl 80 µg kg ⁻¹	Alfentanil 200 µg kg ⁻¹	Alfentanil 400 µg kg ⁻¹						
	+ DFP	+ DFP										
Cerebellum	0.13	0.13	0.25	0.24	1.4	1.2	2.5	2.8	0.4	0.6*	0.6	1.3*
Pons and medulla	0.10	0.10	0.20	0.18	1.4	1.2	2.3	2.7	0.4	0.5*	0.5	1.2*
Hypothalamus	0.19	0.18	0.35	0.33	1.7	1.6	3.2	3.9	0.6	1.1*	0.8	3.5*
Striatum	0.13	0.12	0.23	0.25	1.7	1.5	3.0	3.3	0.4	0.8*	0.6	1.9*
Mid-brain	0.11	0.13	0.23	0.27	1.8	1.4	2.7	3.3	0.4	0.7*	0.6	1.7*
Hippocampus	0.15	0.15	0.29	0.30	1.6	1.4	2.9	3.2	0.5	0.8*	0.6	1.6*
Hind cortex	0.10	0.11	0.17	0.17	1.5	1.3	2.4	2.7	0.3	0.5*	0.6	1.0*
Frontal cortex	0.10	0.10	0.18	0.19	1.6	1.3*	2.7	2.9	0.4	0.6*	0.6	1.1*

Each value is the mean of six observations.

* $P < 0.05$, DFP vs control (Student's *t* test).

significant rise in brain levels at 200 µg kg⁻¹ alfentanil may be partly due to lower plasma levels since the blood volume of the brain is not accounted for in determinations of brain radioactivity.

The mechanisms underlying the interaction between DFP and alfentanil are at present unclear. Although DFP has been shown to cause increased permeability of certain blood capillaries (von Sallmann & Dillon, 1947), it would be expected that a change in the permeability of the blood-brain barrier would alter penetration of all opioids. This does not appear to be the case. Displacement from plasma protein sites should also be considered since DFP irreversibly binds to plasma proteins and to erythrocytes (Truhaut, 1966). Both fentanyl and alfentanil have a high

fractional binding to blood proteins in the rat, dog and man (Meuldermans *et al.*, 1982) though data for the mouse is lacking. Again it might be expected that if DFP causes displacement, free plasma levels of both fentanyl and alfentanil would be increased allowing greater access of these opioids into brain. However, it is perhaps noteworthy that fentanyl but not alfentanil binding is markedly influenced by blood pH; DFP may produce either acidosis or alkalosis as a result of its effects on respiration (Karczmar, 1967).

In conclusion, the distribution of alfentanil and access to the central nervous system was altered by DFP. The interaction appears to be opioid specific since the entry of either fentanyl or morphine into the brain was relatively unaffected.

References

BRODIE, B.B., KURZ, H. & SCHANKER, L.S. (1960). The importance of dissociation constant and lipid solubility in influencing the passage of drugs into the cerebrospinal fluid. *J. Pharmac. exp. Ther.*, **130**, 20-25.

GARDOCKI, J.F. & YELNOSKY, J. (1963). A study of some of the pharmacologic actions of fentanyl citrate. *Tox. appl. Pharmac.*, **6**, 48-62.

GLOWINSKI, J. & IVERSEN, L.L. (1966). Regional studies of catecholamines in the rat brain. I. Disposition of ³H-norepinephrine, ³H-dopamine and ³H-dopa in various regions of the brain. *J. Neurochem.*, **13**, 655-669.

HERZ, A. & TESCHEMACHER, H.-J. (1971). Activities and sites of antinociceptive action of morphine-like analgesics and kinetics and distribution following intravenous, intracerebral and intraventricular application. *Adv. Drug. Res.*, **6**, 79-118.

HUG, C.C. & MURPHY, M.R. (1981). Tissue redistribution of fentanyl and termination of its effects in rats. *Anaesthesiology*, **55**, 369-375.

JOHANNESSON, T. & BECKER, B.A. (1973). Morphine analgesia in rats at various ages. *Acta pharmac. Tox.*, **33**, 429-441.

KARCZMAR, A.G. (1967). Pharmacologic, toxicologic and therapeutic properties of anticholinesterase agents. *Physiol. Pharmac.*, **3**, 163-322.

KITCHEN, I. & GREEN, P.G. (1983). Different effects of di-isopropylfluorophosphate poisoning and its treatment on opioid antinociception in the mouse. *Life Sci.*, **33**, 669-672.

KOEHN, G.L., HENDERSON, G. & KARCZMAR, A.G. (1980). Di-isopropylphosphofluoridate-induced antinociception: possible role of endogenous opioids. *Eur. J. Pharmac.*, **61**, 167-173.

KOEHN, G.L. & KARCZMAR, A.G. (1978). Effects of di-

isopropylphosphofluoridate on analgesia and motor behaviour in the rat. *Prog. Neuro-Psychopharmac.*, **2**, 169-177.

MEULDERMANS, W.E.G., HURKMANS, R.M.A. & HEYKANTS, J.J.P. (1982). Plasma protein binding and distribution of fentanyl, sufentanil, alfentanil and lofentanil in blood. *Arch. int. Pharmacodyn.*, **257**, 4-19.

STANSKI, D.R. & HUG, C.C. (1982). Alfentanil - a kinetically predictable narcotic analgesic. *Anaesthesiology*, **57**, 435-438.

TRUHAUT, R. (1966). The transportation of toxic com-
pounds by plasma proteins. In *Transport function of plasma proteins*. (ed. Desgrez, P. & De Traverse, P.M. pp. 147-171. Holland: Elsevier.

VON SALLMANN, L. & DILLON, B. (1947). The effect of di-isopropylfluorophosphate on the capillaries of the anterior segment of the eye in rabbits. *Am. J. Physiol.*, **30**, 1244-1262.

WOOD, P., ENGLISH, J., CHAKRABORTY, J. & HINTON, R.H. (1975). The use of non-ionic industrial detergents in liquid scintillation counting. *Lab. pract.*, **24**, 739-740.

(Received July 24, 1984.

Revised October 21, 1984.

Accepted November 22, 1984.)